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Abstract

We revisit the classic Susceptible-Infected-Recovered (SIR) epidemic model and one of its
nonlocal variations recently developed in [3]. We introduce several new approaches to derive
exact analytical solutions in the classical situation and analyze the corresponding effective
approximations in the nonlocal setting. An interesting new feature of the nonlocal models,
compared with the classic SIR model, is the appearance of multiple peak solutions for the
infected population. We provide several rigorous results on the existence and non-existence
of peak solutions with sharp asymptotics.

1 Introduction

This paper is oriented around the classic SIR model in mathematical epidemiology and one of
its nonlocal variations recently developed in [3]. The main purpose is to provide a systematic
approach for finding exact analytical solutions to the models under appropriate initial conditions.
The susceptible-infected-recovered (SIR) model has been a cornerstone in the study of the spread-
ing mechanisms of infectious diseases for many decades since its initiation in the 1920s [6]. The
success of the SIR model has been a consequence of its intuitive simplicity, analytical tractability,
and ability to predict the underlying mechanisms elucidating the spread of infectious diseases. In
its simplest form, the classic SIR model is a system of nonlinear ordinary differential equations:

dS

dt
= −λ I

N
S,

dI

dt
= λ

I

N
S − γI, (1.1)

dR

dt
= γI,

where S, I ,R andN = S+R+I denote the susceptible, infected, recovered and total populations,
respectively; λ > 0 is the total transmission rate, and γ > 0 is the average recovery rate. One
should note that due to the conservation law S + I + R ≡ N the degree of freedom in (1.2) is
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in fact two instead of three. By a normalization of S
N → S, I

N → I , R
N → R, the system (1.1)

becomes

dS

dt
= −λIS,

dI

dt
= λIS − γI, (1.2)

dR

dt
= γI,

and the conservation law becomes S + I + R ≡ 1. Despite its simple looking structure, the
nonlinear interaction between the susceptible and infected populations makes the investigation of
some of the fundamental mathematical properties of the model a daunting task. In particular, the
search of closed form (explicit) solutions to the model subject to appropriate initial conditions has
been a significant challenge in the community of mathematical epidemiology, yet the resolution is
still elusive. To the authors’ knowledge, the implicit solution discovered by Harko et al in 2014
[5] is the first exact analytical solution to the model since the 1920s. Although explicit solutions
are still not available, the implicit solution can be charted in a systematic way such that it can be
applied in various situations for practical purposes. An exact solution of a special case of the SIR
model was presented earlier in [14]. The SIR model has also been investigated numerically in a
number of works such as [1, 2, 12, 13]. A stochastic epidemic-type model was recently studied in
[15]. Lyapunov functions for classic SIR and SIS epidemiological models were introduced in [7],
and a new one later in [11]. For reaction-diffusion type models one can see recent [8, 9, 10] and
the references therein for more detailed discussions.

1.1 Motivation and Goal

Now we would like to point out the facts that motivate the current work. Recently in [3], the
authors proposed an alternative version of the classic SIR model by replacing the exponential
function in the integral form of the infected population by rewriting the constant recovery rate as
the hazard function of the exponential function, due to their equivalence, and then replacing the
hazard function of exponential function by other types of hazard functions. The hybrid differential-
integral model is more realistic than the classic SIR model in the sense that the former one replaces
the constant recovery rate in the latter one by a probability density function. Indeed, when the
recovery rate is constant, by replacing the nonlinear term in the second equation of (1.2) by−S′(t),
then formally solving the equation for I(t), one gets

I(t) =

∫ t

0
e−γ(t−τ)[−S′(τ)]dτ + I0e

−γt,

where ′ = d
dt . The main idea of [3] is to rewrite the exponential function as e−γt = 1− (1−e−γt),

then replace 1−e−γt, which is exactly the cumulative density function of exponential distribution,
by a cumulative density function supported in [0,∞), called G(t), together with the differential
equation for S and the conservation of total population resulting in the nonlocal (normalized) SIR
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model:
dS

dt
= −λIS,

I(t) =

∫ t

0
[1−G(t− τ)] · [−S′(τ)]dτ + I0[1−G(t)],

R = 1− I − S.

(1.3)

We observe that once the constant recovery rate is replaced by a probability density function, the
approach of [5] (which is built on analyzing the usual Abel-type equations) becomes unaccessible
for finding analytical solutions to the nonlocal model. Furthermore, even the construction and
analysis of the corresponding approximate solutions seem nontrivial without deeper understanding
of the nonlocal model. These are the major facts that motivate the current work.

The goal of this paper is to provide two alternative (more systematic) approaches for finding
analytic and approximate solutions to the classic and nonlocal SIR models, (1.2) & (1.3), under
appropriate initial conditions. The first approach (see Sections 2 and 4), is to regard the infected
population, I , as a function of the susceptible one, S, instead of t, based on the observation that S
is a strictly decreasing function of t (hence the inverse function of S(t) exists). Then by solving
a differential equation for I in terms of S, one gets a closed form of I in terms of S. In the
nonlocal setting, one has to make certain approximations of the nonlocal kernel in order to derive
a quantitative explicit expression. In the second approach (see Section 3 and esp. Section 5),
we introduce a rescaled (nonlocal) time variable τ which is measured according to normalized
instantaneous infected population, and analyze directly the susceptible population (along with
other variables) by an approximation of the interaction kernel. All properties of the solutions are
analyzed in the τ -scale. We then translate these results into the original time scale t by using the
nonlocal map t→ τ . Conceptually, this approach is rather clean since it corresponds to a nonlocal
stretching of the time axis under which the dynamics of the model becomes much simpler (this is
particularly transparent in the classic SIR case, see Section 3). On the other hand, an interesting
new feature of the nonlocal model is that one can accommodate certain infected populations with
several peaks (in the classic SIR case, one can have at most one, see Section 3). We give several
rigorous constructions on the existence of such solutions having multiple peaks (with “controlled”
centers) in Section 5.

The rest of this paper is organized as follows. In Sections 2 and 3, we revisit the classic
SIR model and introduce the aforementioned analyses in the classic situation. These analyses are
then generalized to the nonlocal SIR models in Sections 4 and 5. Some concluding remarks are
gathered at the end of Section 5.

Notation.

For any two positive quantities X and Y , we shall use the notation X . Y if X ≤ CY for some
harmless positive constant C. We shall write X � Y if X ≤ cY for some sufficiently small
constant c > 0. The smallness of the constant c is usually clear from the context.
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2 Classic SIR Model

In this section, we revisit the classic SIR model which will motivate the nonlocal model in later
sections. The classic (normalized) SIR model takes the form:

dS

dt
= −λIS,

dI

dt
= λIS − γI,

dR

dt
= γI.

(2.1)

We observe that since the transmission rate λ is positive, in the biologically relevant regime where
the populations are positive, the susceptible population is strictly decreasing with respect to t due
to the first equation in (2.1). This indicates that S(t) is a one-to-one function, and hence one
can define an inverse function of S and express t in terms of S. Therefore, we can regard I as a
function of S, instead of t. By dividing the second equation in (2.1) by the first one, we obtain

dI

dS
=
λIS − γI
−λIS

, (2.2)

from which we get
dI

dS
= −1 + γ

λS
. (2.3)

By solving (2.3) for I , we have

I(S) = −S +
γ

λ
lnS + C, (2.4)

where
C = I0 + S0 −

γ

λ
lnS0.

Now, by plugging (2.4) into the first equation in (2.1), we have

dS

dt
= λ

(
S2 − γ

λ
S lnS − CS

)
. (2.5)

Denote the anti-derivative of
1

λS2 − γS lnS − λCS
by F (S). Then we deduce from (2.5) that

F (S)− F (S0) = t, (2.6)

which is consistent with the analytical solution reported in [5]. Once the susceptible population is
computed from (2.6), the infected population is then calculated from (2.4), and R is determined
from the conservation of total population: R = 1− I − S.
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3 New Analysis for Classic SIR Model

Consider the equations of S and I in (2.1)
d
dtS = −λIS
d
dtI = λIS − γI,
S|t=0 = S0, I|t=0 = I0.

Note that S0 + I0 ≤ 1 and S0 ≥ 0, I0 ≥ 0. Without loss of generality, we may assume I0 > 0
since if I0 = 0 then (S0, 0) is a steady state. Also we may assume S0 > 0 since the case S0 = 0
generates only the trivial dynamics (S(t), I(t)) = (0, I0e

−γt). Now observe that since I0 > 0, we
have

0 < I(t) < 1, ∀ 0 ≤ t <∞.

We now intend to linearise the nonlinear dynamics by introducing a new (nonlinear and nonlocal)
time scale τ as

τ(t) =

∫ t

0
I(s)ds, i.e. dτ = Idt.

We then introduce functions (S1, I1) such that S(t) = S1(τ(t)), I(t) = I1(τ(t)). Then
d
dτ S1 = −λS1,
d
dτ I1 = λS1 − γ,
S1|τ=0 = S0, I1|τ=0 = I0.

Solving the above system yields{
S1(τ) = S0e

−λτ ,

I1(τ) = S0 + I0 − S0e−λτ − γτ.
(3.1)

Observe that I ′′1 < 0 and I ′1(0) = λS0 − γ. Now discuss two cases.
Case 1: λS0 > γ. In the literature this corresponds to the case where the reproduction number

is bigger than 1. Clearly I1 will first increase and then decrease to zero.

τ

��

Figure 1: The function I1 in Case 1
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Case 2: λS0 ≤ γ. This corresponds to the case where the reproduction number is less than or
equal to 1. In this case I1 will monotonically decrease to zero.

τ

��

Figure 2: The function I1 in Case 2

Concluding from the above two cases, it is clear that I1(τ) is defined in the regime 0 ≤ τ ≤
τ∞, where τ∞ is the unique number solving the equation

S0 + I0 − S0e−λτ∞ − γτ∞ = 0.

To recover S(t) = S1(τ(t)), one may first discretize the interval [0, τ∞] as τ0, τ1, · · · , τm, and
solve

tj =

∫ τj

0

1

I1(s)
ds, j = 0, · · · ,m.

Since S(tj) = S1(τj) and I(tj) = I1(τj), the dynamics of (S, I) is then fully recovered. We
should emphasize that through the rescaled time “clock” τ , the dynamics for the original SIR
model is fully captured by (3.1), and the map τ → t simply provides the abscissa of the original
SIR variables.

Remark 3.1. Similar analysis can be conducted on the classic SIS (cf. [4]) epidemic model:{
dS
dt = − λ

N SI + (µ+ γ)I,
dI
dt =

λ
N SI − (µ+ γ)I,

where λ > 0, γ > 0, µ ≥ 0 correspond to total transmission rate, average recovery rate and
average death rate, respectively. Due to the conservation of S(t) + I(t) ≡ N , it suffices to study
only the dynamics of S. In terms of the rescaled variable S̃ = S/N and the rescaled “clock”
dτ = Ĩdt (Ĩ = I/N ), one has

dS̃

dτ
= −λS̃ + µ+ γ

which yields

S̃(τ) =
µ+ γ

λ
(1− e−λτ ) + S̃0e

−λτ ,

Ĩ(τ) = 1− µ+ γ

λ
+ e−λτ (

µ+ γ

λ
− S̃0).

One can then determine τ by using the relation dτ = Ĩdt. We omit the details. We should remark
that alternatively one can regard S̃ as a function of Ĩ and solve the ODE directly.
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4 Nonlocal SIR Model

In this section, we use the idea in Section 2 to derive analytical solutions to the (normalized)
nonlocal differential-integral SIR model:

dS

dt
= −λIS,

I(t) =

∫ t

0
[1−G(t− τ)] · [−S′(τ)]dτ + I0[1−G(t)],

R = 1− I − S,

(4.1)

which becomes the classic normalized SIR model when G(t) = 1 − e−γt. Note that the integral
equation for I can be written as

I(t) = S0 − S(t) +
∫ t

0
G(t− τ)S′(τ)dτ + I0[1−G(t)]

= 1− S(t) +
∫ t

0
G(t− τ)S′(τ)dτ − I0G(t) by recalling R0 = 0.

(4.2)

By regarding t as a function of S, we have an alternative expression for I:

I(S) = 1− S +

∫ S

S0

G̃(S,S)dS− I0G(S), (4.3)

which is a nonlocal equation with respect to S. Hence, one can postulate various conditions on
G̃ to generate different kinds of SIR models, depending on the specific biological environments
under consideration. To proceed we consider the following convolution-type kernel

G̃(S,S) = G(S − S),

and (4.3) becomes (after a change of variable)

I(S) = 1− S +

∫ S−S0

0
G(S)dS− I0G(S), (4.4)

Differentiating (4.4) with respect to S, we obtain

dI

dS
= −1 +G(S − S0)− I0G′(S). (4.5)

In view of (2.3) we see that when the kernel G satisfies

G(S − S0)− I0G′(S) =
γ

λS
, (4.6)

the following hybrid model

dS

dt
= −λIS,

I(S) = 1− S +

∫ S

S0

G(S − S)dS− I0G(S),

R = 1− I − S

(4.7)
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coincides with the classic normalized SIR model (2.1). By plugging the second equation of (4.7)
into the first equation, we have

dS

dt
= −λS

(
1− S +

∫ S

S0

G(S − S)dS− I0G(S)

)
, (4.8)

from which one gets

1

λS
(
1− S +

∫ S
S0

G(S − S)dS− I0G(S)
)dS = −dt, (4.9)

whose solution can be found depending on the specific form of G that one postulates.

5 An Approximation of the Nonlocal SIR Model

In this section, we use a similar approach as in Section 3 to derive new approximating solutions to
the hybrid differential-integral SIR model in (4.1). We shall first derive an effective “τ -model” by
using a nonlocal stretching of the time axis. The properties of the τ -model will then be analyzed
in detail by some judicious choices of the interaction kernels.

5.1 Derivation of the τ -Model

We introduce a new time scale τ as

τ(t) =

∫ t

0
I(s) ds, i.e. dτ = Idt.

It is clear that for all practical situations I(t) is positive as long as S0 6= 0 and I0 6= 0 (recall in the
second equation of (4.1), one has I(t) =

∫ t
0 (1−G(t− t̃))(λI(t̃)S(t̃))dt̃+ I0(1−G(t))). Hence,

τ is a strictly increasing function, and thus, τ has an inverse function, which will be denoted as ϕ.
Note that ϕ(0) = 0.

Let S(t) = S1(τ(t)), I(t) = I1(τ(t)). Then it follows from (4.1) that

S1(τ) = S0e
−λτ ;

I1(τ) = λ

∫ τ

0
[1−G(ϕ(τ)− ϕ(τ̃))]S1(τ̃) dτ̃ + I0[1−G(ϕ(τ))].

Denote G1(τ, τ̃) = G(ϕ(τ)− ϕ(τ̃)). Then we obtain

I1(τ) = λS0

∫ τ

0
[1−G1(τ, τ̃)]e

−λτ̃ dτ̃ + I0[1−G1(τ, 0)]

= λS0e
−λτ

∫ τ

0
[1−G1(τ, τ − τ̃)]eλτ̃ dτ̃ + I0[1−G1(τ, 0)],

where in the second equality above, we have made a change of variable τ̃ → τ − τ̃ . Since
G is a cumulative density function, the function G1(τ, τ̃) vanishes when τ ≤ τ̃ , G1(τ, τ̃) is
monotonically increasing in the variable τ when τ̃ is held fixed, and is monotonically decreasing

8



in the variable τ̃ when τ is fixed, andG1(τ, τ̃) tends to 1 as τ tends to infinity.1 To proceed further
we now dispose of the requirement that G1 was obtained from a cumulative density function G
through a nonlinear map ϕ, and keep in stock only some (fairly mild) consistency conditions. As
will become clear, such relaxation gives rise to a more general family of nonlocal models which
includes the original ones as special cases. To this end, denote

D− := {(x, y) ∈ R2 : 0 ≤ y ≤ x <∞}.

The following definition seems quite natural.

Definition 5.1 (Admissible kernels). A continuous function G1 = G1(τ, τ̃): D− → [0, 1] is said
to be admissible if the following conditions hold:

• G1(τ, τ) = 0 for any 0 ≤ τ <∞ and G1(τ, τ̃)→ 1 as τ →∞ for each fixed τ̃ .

• G1(τ, τ̃) is non-decreasing in τ when τ̃ is fixed, and G1(τ, τ̃) is non-increasing in τ̃ when
τ is fixed.

Remark. The continuity requirement onG1 is for convenience and simplicity only. It can certainly
be weakened to partial continuity (in each variables separately) or upper or lower continuity
depending on the convention used in the cumulative distribution function. We shall not dwell on
this issue here.

Definition 5.2 (τ -model). Let λ > 0. Let G1 be a given admissible kernel, S0 > 0, I0 > 0. We
say (S1, I1) evolves according to a τ -model with parameters (λ,G1) and initial data (S0, I0) if
S1(τ) = e−λτS0, and

I1(τ) = λS0e
−λτ

∫ τ

0
[1−G1(τ, τ − τ̃)]eλτ̃ dτ̃ + I0[1−G1(τ, 0)], τ > 0.

Remark. By using the discussion preceding the definition of admissible kernel, it is immediately
clear that the nonlocal model (4.1) is a special case of our τ -model through the identification
G1(τ, τ̃) = G(ϕ(τ) − ϕ(τ̃)). Here one tacitly assume that the model (4.1) is already solved on
some time interval and there is no difficulty in defining the nonlinear (albeit not explicit) map
ϕ. We ignore completely the subtle dependence of the map ϕ on the cumulative distribution G
and treat the resulting G1 function as given. To obtain more accurate models one can perform
iterations on the τ -model (by feeding iterated trial kernel functionsG(k)

1 = G(ϕ(k)(τ)−ϕ(k)(τ̃)))
which in some sense will correspond to performing fixed-point type arguments on the original
nonlocal model.

Remark. Since G1(τ, τ − τ̃) → 0 as τ̃ → 0, we have I1(τ) > 0 for any 0 ≤ τ < ∞. On the
other hand, by a change of variable

I1(τ) = λS0

∫ τ

0
[1−G1(τ, τ̃)]e

−λτ̃dτ̃ + I0[1−G1(τ, 0)].

1From a modeling point of view, one can regard G1(τ, τ̃) as a new family of heterogeneous cumulative distribution
functions coming from some prior probability distributions. For example, one can take a class of probability density
kernels p = p(τ, τ0) which are defined on the region τ ≥ τ0 (think of τ0 as a parameter marking the time origin). Define
G1(τ, τ0) =

∫ τ
τ0
p(s, τ0)ds. Then clearly such function G1(τ, τ0) represents a parameterized class of cumulative

distributions which are heterogeneous in the sense that it has some dependence on the location τ0.
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By using Lebesgue Dominated Convergence, it follows that I1(τ)→ 0 as τ →∞. It follows that
the map

ψ(τ) =

∫ τ

0

1

I1(τ̃)
dτ̃ ,

provides a monotone and smooth bijection of the time axis [0,∞). Denote the inverse map of ψ as
ψ−1. Then in the original time scale t, we can recover

S(t) = S1(ψ
−1(t)), I(t) = I1(ψ

−1(t)).

Remark. In practice, the inverse map ψ−1 can be recovered more efficiently using a direct dis-
cretization of the τ -variables. More precisely one may (as before in the classic SIR case) first
discretize the interval [0,∞) as τ0, τ1, τ2, · · · ,, and solve

tj =

∫ τj

0

1

I1(τ̃)
dτ̃ , j = 0, 1, · · · .

Since S(tj) = S1(τj) and I(tj) = I1(τj), the dynamics of (S, I) is then (approximately) fully
recovered.

Our τ -model shares some general features in common with the classic models. As an example,
the following proposition is a manifestation of the maximum principle in the nonlocal situation.

Proposition 5.3 (Maximum principle). For all τ ≥ 0, I1(τ) > 0 and I1(τ)→ 0 as τ →∞. Also
for all τ > 0,

S1(τ) + I1(τ) ≤ S0 + I0.

Proof. The properties of I1 were proved in one of the remarks before. Now since G1 ≥ 0, it is
clear that

S1(τ) + I1(τ) ≤ λS0e−λτ
∫ τ

0
eλτ̃ dτ̃ + I0

= S0 + I0 − S0e−λτ ≤ S0 + I0 for all τ.

5.2 Simplified τ -Models

Our τ -model is quite flexible since different choices of the admissible kernel G1 will lead to
various new nonlocal SIR models. We now choose a homogeneous kernel G1(τ, τ̃) = G̃(τ − τ̃),
where G̃ : [0,∞)→ [0, 1] is a given cumulative distribution function. Then clearly

I1(τ) = λS0e
−λτ

∫ τ

0
[1− G̃(τ̃)]eλτ̃ dτ̃ + I0[1− G̃(τ)]. (5.1)

The explicit form of I1 can sometimes be worked out by using the specific form of G̃ that one
postulates. Now we discuss a few simple cases which are analogous to the classic SIR model.
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Case 1: G̃(τ) = 1− e−Aτ with 0 < A < λ. It is easy to check that

I1 =
λS0
A− λ

e−λτ + (I0 −
λS0
A− λ

)e−Aτ .

Clearly I1 will first increase and then decrease to zero as τ → ∞. See Figure 3. This one
corresponds to the case where the reproduction number is bigger than 1 in the classic SIR model.

τ

��

Figure 3: The function I1 in Case 1

Case 2: G̃(τ) = 1− e−Aτ with λ < A < λ
(
1 + S0

I0

)
and

I1 =
λS0
A− λ

e−λτ + (I0 −
λS0
A− λ

)e−Aτ .

In this case I1 will monotonically decrease to zero as τ →∞. See Figure 4. This one corresponds
to the case where the reproduction number is less than or equal to 1 in the classical SIR model.

τ

��

Figure 4: The function I1 in Case 2

Case 3: An important difference from the classic SIR model is that in our τ -model, I1 may
exhibit several bumps, that is, I1 may have several local maximum points. To see this phenomenon
in the case of at least two bumps, we shall need to make some further simplifications of the model
(5.1) by yet another stretching of the time axis. Since this formulation will be needed for the
remaining part of this section, we shall record it here as a proposition.

Proposition 5.4. By using the change of variable s = s(τ) = eλτ , the model (5.1) is equivalent
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to the integral equation:

f(s) =
β

s

∫ s

1
g(s̃) ds̃+ g(s), s ≥ 1, (5.2)

where f(s) = I1(log(s)/λ)
I0

, g(s) = 1 − G̃(log(s)/λ) and β = S0/I0 > 0. Note that g(s) is a
given continuous non-increasing function defined on [1,∞) such that g(1) = 1 and g(s) → 0 as
s→∞.

Proof. The proof is obvious. One should note that (for later discussions) the monotonicity of
I1(τ) is the same as the one of f(s). Also observe that thanks to the transformation s = eλτ ,
exponential decay in the τ variable then translates to the power decay in the s-variable.

Remark. From the relation

f(s) = β · 1
s

∫ s

1
g(s̃) ds̃+ g(s),

one sees that f(s) & s−1 for all s, thus f cannot have better than s−1 decay.

Remark. As was already mentioned, our later results of this section will be stated in terms of
the pair (g, f) with g being a given kernel function and f being the infected population in “s-
variable”. The main difficulty in our constructions later is the requirement that the kernel function
g(s) must monotonically decrease to zero when s tends to infinity. Somewhat surprisingly despite
this rigid requirement there can still appear oscillations in the infected population by judicious
choice of the kernel functions.

Remark 5.5. The map g → f in (5.2) is invertible and in this sense g and f is in one to one
correspondence. To see this, one can rewrite (5.2) as

(sβ
∫ s

1
g(s̃)ds̃)′ = f(s)sβ.

Integrating and some simple algebra then yield

g(s) = −βs−β−1
∫ s

1
f(s̃)s̃βds̃+ f(s),

g′(s) = (s−β
∫ s

1
s̃βf(s̃)ds̃)′′

= β(β + 1)s−β−2
∫ s

1
f(s̃)s̃βds̃− β f(s)

s
+ f ′(s).

To see the phenomenon of having at least two peaks in I1, we now give an explicit computable
(albeit not smooth) example in terms of f . Choose β = 2 and a piecewise continuous function g
as:

g(s) :=


1
s , 1 ≤ s ≤ 2;
1
2 2 ≤ s ≤ 2.1;
2.1
2s s ≥ 2.1.
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Then

f(s) :=


2 ln(s)+1

s , 1 ≤ s ≤ 2;
3
2 + 2 ln 2−2

s 2 ≤ s ≤ 2.1;
2
s

(
ln 2 + 1

20 + 2.1
2 ln( s

2.1)
)
+ 2.1

2s s ≥ 2.1.

The picture of this f(s) and I1(τ) can be illustrated in Figure 5 below:

s

�

τ

��

Figure 5: The functions f , and I1 (with λ = 0.1), in Case 3

Although the above g and f are not smooth, it provides some good evidence that one can hope
to construct smooth solutions with two or more peaks. One should note, however, that a direct
mollification of the g function may introduceO(1)-changes for the derivative of f near its original
peak and thus may destroy the peak. On the other hand, if one prefers to mollifying directly
the function f near its two peaks, then one has to make sure that g still remains monotonically
decreasing after mollification, that is,

g′(s) = β(β + 1)s−β−2
∫ s

1
f(s̃)s̃βds̃− β f(s)

s
+ f ′(s) ≤ 0, ∀ s.

Now note that near the second peak of f , f ′ is not continuous and it has O(1)-jump around the
peak. Since g′(2.1−) = 0, the above inequality may well stop being true after mollification due
to this O(1)-change. For these considerations we shall present in detail the construction and also
the mollification procedure in the remaining part of this section. Our main results in the next
subsection are Proposition 5.7 and Proposition 5.9 which give the existence of solutions having
multiple peaks. To clarify the meaning of peak solution, we now introduce a simple definition.

Definition 5.6 (Peak). A point s0 ∈ (1,∞) is said to be a peak (i.e. strict local max) for the
function f : [1,∞) → (0,∞), if there exists a local neighborhood N0 of s0, such that f(s) <
f(s0) for any s ∈ N0, s 6= s0. In particular, if f is C2, f ′(s0) = 0 and f ′′(s0) < 0, then s0 is a
peak for f .

Our main objective is to find kernel functions g which decrease monotonically to zero such that
the resulting infected population f possesses multiple peaks. Thanks to the algebra in Remark 5.5,
it suffices for us to construct a positive function f with multiple peaks and obeying the nonlocal
inequality g′ < 0 (along with decay conditions at infinity) i.e.:

β(β + 1)s−β−2
∫ s

1
f(s̃)s̃βds̃− β f(s)

s
+ f ′(s) < 0, ∀ s ≥ 1.
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Achieving the above inequality point-wisely together with C∞-smoothness turns out to be a del-
icate task, and to elucidate the main ideas we shall present a rough result first (Proposition 5.7)
which will be upgraded later in Proposition 5.9. In both propositions we shall slightly change the
notation and denote f by I , that is,

I(s) =
β

s

∫ s

1
g(s̃)ds̃+ g(s), s ≥ 1;

and equivalently

g(s) = −βs−β−1
∫ s

1
I(s̃)s̃βds̃+ I(s),

g′(s) = (s−β
∫ s

1
s̃βI(s̃)ds̃)′′

= β(β + 1)s−β−2
∫ s

1
I(s̃)s̃βds̃− β I(s)

s
+ I ′(s).

5.3 Peak Solutions

Case 4a: existence of arbitrarily (finitely) many peaks. We first show that it is possible to admit
finitely many peaks (as many as possible). A stronger result will be established in forthcoming
Case 4b (compare with Proposition 5.9).

Proposition 5.7 (Finitely many peaks, rough control). Let β > 0. For any integer m0 ≥ 1 and
any 0 < θ ≤ 1, there exist a family of C∞-smooth functions I = I(s) : [1,∞) → (0,∞) such
that (

s−β
∫ s

1
I(s̃)s̃βds̃

)′′
= β(β + 1)s−β−2

∫ s

1
I(s̃)s̃βds̃− βs−1I(s) + I ′(s) < 0, ∀ 1 ≤ s <∞. (5.3)

Furthermore I(s) . s−θ, |I ′(s)| . s−1−θ, and I(s) has at least m0 strict local maxima located
at some points s1, s2, · · · , sm0 , such that I ′(sj) = 0, I ′′(sj) < 0 for any 1 ≤ j ≤ m0.

Remark. First observe that it suffices for us to construct a piecewise smooth I(s) (overall as a
Lipschitz continuous function) which satisfies (5.3) except at one point s = S0. Then mollifying
such I(s) around s = S0 suitably easily yields the desired smooth function still satisfying (5.3).
Indeed, suppose I(s) satisfies (5.3) for 1 ≤ s < S0 and s > S0 respectively, I(s) decays to zero
as s tends to infinity and I(s) hasm0 local maxima inside the interval (1, S0). Also assume I(·) is
C∞ for s < S0 and s > S0 respectively, and the LHS of (5.3) is bounded above by some uniform
negative constant for s close to S0. Then

g(s) =

(
s−β

∫ s

1
I(s̃)s̃βds̃

)′
= −βs−β−1

∫ s

1
I(s̃)s̃βds̃+ I(s)

satisfies g′(s) < 0 for s < S0 and s > S0, and g′(s) < −c0 < 0 for s close to S0 (c0 > 0 is some
constant). This (together with the decay of g at infinity) implies that g is Lipschitz, g > 0 for all s

14



and g is strictly monotonically decreasing. Define gsmooth to be a suitable mollification of g (the
mollification is only done in a sufficiently small neighborhood of s = S0). Define

Ismooth(s) = s−β ·
(
sβ
∫ s

1
gsmooth(s̃)ds̃

)′
= β

∫ s
1 gsmooth(s̃)ds̃

s
+ gsmooth(s).

Then Ismooth is clearly positive, C∞ and satisfies (5.3). Furthermore Ismooth has at least m0

local maxima since it inherits the local maxima of I(·) inside the interval (1, S0) as long as
the mollification is done away from the local maxima (note that Ismooth may generate some new
maxima near the point S0 since mollification is done for the g function).

Remark. We clarify a bit more in detail the “suitable” mollification procedure for the g-function
alluded to in the previous remark. The main point is to preserve strict monotonicity whilst achiev-
ing C∞-smoothness. To be precise, assume g is C∞ except at s = S0, g′ < 0 for s 6= S0, and
g′(s) < −c0 < 0 for |s − S0| < 2δ0 (δ0 > 0 is sufficiently small). Choose a C∞-smooth radial
decreasing bump function φ0 such that φ0(x) = exp(− 1

1−x2 ) for 2
3 < |x| < 1, φ0(x) = 1 for

|x| < 1
3 , and φ0(x) = 0 for |x| ≥ 1. Define

h(s) = g′(s)

(
1− φ0(

s− S0

δ0
)

)
− a · φ0(

s− S0

δ0
),

where the constant a > 0 is chosen such that∫ S0+δ0

S0−δ0
h(s)ds =

∫ S0+δ0

S0−δ0
g′(s)ds.

Define c1 = min{c0, a} > 0. Then clearly for all |s− S0| ≤ δ0, one has

h(s) < −c1 < 0.

Also h(s) = g′(s) for |s− S0| > δ0. Define

gsmooth(s) = g(1) +

∫ s

1
h(s̃)ds̃.

Then it is not difficult to check that gsmooth(s) = g(s) for s < S0 − δ0 or s > S0 + δ0, and
g′smooth < 0 for all s. Thus gsmooth is the desired C∞ function.

Remark. The basic idea of the construction of the function I(s) is as follows. First if we ignore
the constraint of having m0 local maxima, we can choose I(s) piece-wisely as

I(s) =

{
1, 1 ≤ s < S0,

(S0
s )

θ, s > S0,

where 0 < θ ≤ 1. It is easy to check that the inequality (5.3) holds for s < S0. For s > S0, one
observes that

s−β
∫ s

1
I(s̃)s̃βds̃ = s−β

∫ S0

1
s̃βds̃+ s−β

∫ s

S0

s̃β · (S0

s̃
)θds̃

= s−β

(
S
β+1
0 − 1

β + 1
− S

β+1
0

β − θ + 1

)
+ s1−θ

S
θ
0

β − θ + 1
.
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This then clearly yields (5.3) thanks to the condition 0 < θ ≤ 1. Now to finish the construction
we can use an “ε-perturbation” idea to create m0 local maxima in the range 1 ≤ s < S0. The
mollification then shows that one has at least m0 local maxima.

Proof. Define

I(s) =

{
1 + ε · e−s sin s, 1 ≤ s ≤ S0;

α1(
S0
s )

θ, s > S0,

where α1 = 1 + εe−S0 sinS0, and the parameters (ε, S0) will be specified momentarily. It will
become clear from the description below that we obtain a family of functions. Furthermore I(s)
is piecewise C∞ and by using mollification (see the Remarks before) I(s) can be made arbitrarily
smooth.

First it is easy to check that the function e−s sin s has strict local maxima at the points s =
(n+ 1

4)π, n = 0, 2, 4, · · · . We can take S0 = (2(m0−1)+ 1
4+η0)π with η0 > 0 being sufficiently

small. This obviously guarantees that I(·) admits precisely m0 strict local maxima located inside
the interval (1, S0).

Next observe that in (5.3) if we plug in the main order I(s) ≡ 1 we obtain the value−β. Thus
by choosing 0 < ε < 1 sufficiently small (ε can depend on S0 and β) one can guarantee that the
LHS of (5.3) is always less than −β/2 for 1 ≤ s < S0.

Finally we need to check (5.3) for S0 < s <∞. Clearly

s−β
∫ s

1
I(s̃)s̃βds̃ = s−β

∫ S0

1
s̃βds̃+ s−β

∫ S0

1
s̃β · εe−s̃ sin s̃ds̃+ α1s

−β
∫ s

S0

s̃β · (S0

s̃
)θds̃

= s−β

(
S
β+1
0 − 1

β + 1
− α1

S
β+1
0

β − θ + 1
+ C1 · ε

)
+ α1s

1−θ S
θ
0

β − θ + 1
,

where C1 =
∫ S0

1 s̃βe−s̃ sin s̃ds̃. By choosing ε < 1
2(β+1) ·

1
|C1|+1 , one can clearly fulfill (5.3) for

S0 < s <∞. Furthermore the LHS of (5.3) is bounded above by some uniform negative constant
for s close to S0.

Case 4b: More refined results: existence of arbitrarily finitely many peaks with precise control
of the location of maxima.

Lemma 5.8. Let β > 0 and 1 < S0 <∞. There exists θ0 = θ0(β, S0) ∈ (0, 1), such that for any
0 < θ < θ0, there exists f : [1,∞)→ (0,∞) satisfying the following properties:

• f ∈ C∞, and |f(s)| . s−θ, |f ′(s)| . s−θ−1 for all s.

• For some 0 < η0 < 1 (η0 > 0 is a tunable parameter which can be made as small as
possible), one has f(s) ≡ 1 for 1 ≤ s ≤ S0 − η0, and f ′(s) < 0 for all s > S0 − η0.

• There exists a constant c1 > 0, such that for all 1 ≤ s <∞,(
s−β

∫ s

1
f(s̃)s̃βds̃

)′′
+ c1s

−θ−1 < 0. (5.4)
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Proof. We first define a C1-function as:

f0(τ) =

{
1, 1 ≤ τ ≤ S0,
1

1−θ ((
S0
τ )θ − θS0

τ ), τ > S0,

where θ ∈ (0, 1) will be taken sufficiently small. For (5.4) the regime s ≤ S0 is easy to check.
For s > S0, we have

s−β
∫ s

1
f0(s̃)s̃

βds̃

= s−β

(
S
β+1
0 − 1

β + 1
− 1

1− θ
· 1

β − θ + 1
S
β+1
0 +

θ

1− θ
· 1
β
S
β+1
0

)

+
1

1− θ
· 1

β − θ + 1
· Sθ0 · s1−θ −

θ

1− θ
· S0 ·

1

β
.

Now note that if we take θ such that
θ

1− θ
· 1
β
S
β+1
0 ≤ 1

β + 1
,

then we obtain

s−β
∫ s

1
f0(s̃)s̃

βds̃

= −A1s
−β +A2s

1−θ −A3,

where Ai > 0 are constants. This clearly yields a concave function satisfying (5.4).
Now to finish the construction we just need to mollify f0 around S0 whilst keeping the con-

straint (5.4) (with a smaller constant c1 if necessary). Let φ0 ∈ C∞c (R) be radial decreasing such
that φ0(x) = exp(− 1

1−x2 ) for 2
3 < |x| < 1, φ0(x) = 1 for |x| < 1

3 , and φ0(x) = 0 for |x| ≥ 1.
Take small constant η0 > 0 and define

h(s) = f ′0(s)

(
1− φ0(

s− S0

η0
)

)
− aφ0(

s− S0

η0
),

where a > 0 satisfies

a

∫
φ0(x)dx = −

∫
f ′0(S0 + η0x)φ0(x)dx.

Observe that h(s) < 0 for all s > S0 − η0. Define f(s) = f0(1) +
∫ s
1 h(s̃)ds̃. Clearly f(s) =

f0(s), f ′(s) = f ′0(s) for |s − S0| > η0. For |s − S0| ≤ η0, we have |f ′(s) − f ′0(s)| = O(η0),
|f(s)− f0(s)| = O(η20). Then for |s− S0| < η0, we have(

s−β
∫ s

1
f(s̃)s̃βds̃

)′′
= β(β + 1)s−β−2

∫ s

1
f(s̃)s̃βds̃− βs−1f(s) + f ′(s)

= β(β + 1)s−β−2
∫ s

1
f0(s̃)s̃

βds̃− βs−1f0(s) + f ′0(s) +O(η0).

By further shrinking η0 it is then easy to fulfill the constraint (5.4).
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Remark. Alternatively, one can use the usual convolution to define (a slightly different version
of ) f(s) as follows: first extend f0(s) to R such that f0(s) = 1 for s ≤ 0. Then for η0 > 0 let
φη0(x) = η−10 φ0(x/η0)/‖φ0‖1. Define f as the restriction of the convolution f0 ∗ φη0 to the axis
[1,∞). Note that f ≡ 1 on [1, S0 − η0] and f ′ < 0 on (S0 − η0,∞). The estimates

|f(s)− f0(s)| . s−1−θ · η0, ∀ s,
|f ′(s)− f ′0(s)| . s−2−θ · η0, ∀ s > S0 + η0,

|f ′(s)| . η0, ∀S0 − η0 ≤ s ≤ S0 + η0,

then yield the result.

The following is a strengthened version of Proposition 5.7.

Proposition 5.9 (Finitely many peaks, precise control). Let β > 0. For any 1 < M1 < M2 <∞,
any integer m0 ≥ 1, and any m0 different points {sj}m0

j=1 (WLOG s1 < s2 < · · · < sm0) in the
interval (M1,M2), one can find a C∞-smooth function I = I(s) : [1,∞) → (0,∞) such that
the following hold:

• For all 1 ≤ s <∞,(
s−β

∫ s

1
I(s̃)s̃βds̃

)′′
= β(β + 1)s−β−2

∫ s

1
I(s̃)s̃βds̃− βs−1I(s) + I ′(s) < 0. (5.5)

• For some 0 < θ < 1, I(s) . s−θ, |I ′(s)| . s−1−θ, for all s ≥ 1.

• I(s) has m0 strict local maxima located at the points s1, s2, · · · , sm0 , such that I ′(sj) = 0,
I ′′(sj) < 0 for any 1 ≤ j ≤ m0.

• I(s) has no other peaks besides the points {sj}m0
j=1. More precisely, there are points a1 <

b1 < a2 < b2 < · · · < am0 < bm0 < am0+1, such that

– I(s) = 1 for 1 ≤ s ≤ a1, bj ≤ s ≤ aj+1 (j = 1, · · · ,m0);
– I(am0+1) = 1 and I ′(s) < 0 on (am0+1,∞);
– On each interval (aj , bj), I(s) has a peak at s = sj , and I ′(s) > 0 for aj < s < sj ,
I ′(s) < 0 for sj < s < bj .

Proof. We first let S0 =M2 and choose f(s) by using Lemma 5.8. Take a radial decreasing bump

function2 φ1 ∈ C∞c (R) with φ1(x) = e
− 1

1−x2 for |x| < 1, φ1(x) = 0 for |x| > 1. Define

I(s) = f(s) +

m0∑
j=1

δ30φ1(
s− sj
δ0

),

where δ0 � min0≤j≤m0 |sj+1−sj | (here s0 =M1, sm0+1 =M2−η0 where η0 is in Lemma 5.8)
will be taken sufficiently small (such that (5.5) is satisfied). For 1 ≤ j ≤ m0, define aj = sj − δ0,
bj = sj + δ0. Define am0+1 = M2 − η0. It is then not difficult to check that I(s) fulfills the
desired properties.

2Note that here we choose the bump function φ1 to have a “strict” peak instead of a flat maximum at the center.
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Remark 5.10. It is even possible to modify slightly the above construction and construct a func-
tion I(s) having infinitely many peaks within (M1,M2). Take a sequence of increasing points
sj → s∞ ∈ (M1,M2). Define

I(s) = f(s) +
∞∑
j=1

cjφ1(
s− sj
δj

),

where 0 < δj � min{sj+1 − sj , sj − sj−1, 2−j} for all j (so that bubbles stay disjoint) and
cj = e−2/δj (one may also need to shrink δj further so that (5.5) is satisfied). Easy to check that
for any integer k ≥ 0, ∑

j

cjδ
−k
j .

∑
j

k! · e−
1
δj <∞.

Thus I is C∞-smooth which has infinitely (small) peaks located at the points sj .

Remark. Another natural idea is to look for a function I(s) possessing infinitely many plateau
segments emanating to infinity (from which one can create infinitely many peaks in each plateau
such that the formed peaks will have positive distances from each other). However one can dis-
prove such a possibility. More precisely, recall that

I(s) = β · 1
s

∫ s

1
g(s̃)ds̃+ g(s), ∀ s ≥ 1,

and g > 0 monotonically decrease to zero as s tends to infinity.
Claim: The function I(s) cannot have infinitely many intervals [an, bn] with an, bn →∞ such

that I(s) ≡ cn for some constant cn on the interval [an, bn].

Proof of Claim. Argue by contradiction. Suppose such I(s) exists. Then on each [an, bn], we
have

(sβ
∫ s

1
g(s̃)ds̃)′ = cns

β.

Solving this on [an, bn] then gives∫ s

1
g(s̃)ds̃ =

cn
β + 1

s− dns−β, s ∈ [an, bn];

g(s) =
cn

β + 1
+ βdns

−β−1, s ∈ [an, bn],

where dn ≥ 0 (since g is non-increasing). It follows that

1

s

∫ s

1
g(s̃)ds̃ ≤ g(s), for s = an, n ≥ 1.

This is impossible since there exists some number α0 > 0, such that

1

s

∫ s

1
g(s̃)ds̃ > g(s), ∀ s > α0. (5.6)

This last inequality can be easily proved by an ε-δ argument using the monotonicity of g and the
fact that g tends to zero as s→∞.
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Remark. Inspired by the preceding remark, one can prove a stronger result which asserts that
the function I(s) must be strictly monotonically decreasing near infinity. Thus the construction
in Remark 5.10 is in some sense the best possible since one cannot have peaks propagating to
infinity.

Claim: There exists α0 > 0, such that I ′(s) < 0 for all s > α0.

Proof of Claim. This follows directly from the identity

I ′(s) = g′(s) +
β

s

(
−1

s

∫ s

1
g(s̃)ds̃+ g(s)

)
.

and the inequality (5.6).

Remark. From the point of view of epidemic modeling, one should perhaps not expect infinitely
many (relatively) large outbreaks which is naturally excluded in our nonlocal model.

The above concludes our discussion on the properties and relations of I(s) and the kernel g(s).
From a practical point of view, one can collect data for (suitably normalized infected population)
I(s), and reconstruct the approximate kernel g(s). In this way one can build a nonlocal model to
make future predictions of possible outbreaks.

Concluding Remarks

In this work we analyzed the classic SIR model and its nonlocal variant recently introduced in
[3]. The latter is a hybrid differential-integral model incorporating general probability transition
kernels as parameters. We discussed two approaches. One is based on quantifying the explicit
relation of the infected population versus the susceptible population. The basic observation is that
the susceptible population strictly decreases in time which makes it a natural time arrow. In the
classic SIR model it is possible to give almost explicit and analytic expressions of the infected
population in terms of the susceptible population. In the nonlocal SIR model one can use an
approximation of the kernel to derive the explicit functional relationship between the infected
population and the susceptible population. In our second approach, we introduced a nonlocal
time parameter whose differential is the reciprocal of the infected population. Under this nonlocal
stretching of the time axis, the classic SIR model becomes completely linear and the dynamics
can be easily classified. The functional relation between the new time arrow and the old time can
be explicitly worked out by using the classification result obtained in the first step. Exploiting
a similar idea we analyzed the nonlocal SIR model and discovered several novel peak solutions.
Compared with the classic SIR model an interesting new feature of the nonlocal SIR model is
the appearance of solutions having multiple peaks. The stability/instability of such solutions as
well as the classification of general asymptotics of such solutions are presently not known and
these seem to be an interesting new direction. Another fundamental issue left unaddressed in this
work is the notion of the reproduction number in general nonlocal epidemic models. Identifying
the correct generalization of the reproduction number as well as building the natural connection
between the nonlocal and the classic epidemic models seem to be a challenging task. We hope to
address some of these issues in future works.
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